
JOG: Java JIT Peephole Optimizations and Tests from Patterns
Zhiqiang Zang

The University of Texas at Austin
Austin, Texas, USA

zhiqiang.zang@utexas.edu

Aditya Thimmaiah
The University of Texas at Austin

Austin, Texas, USA
auditt@utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, Texas, USA
gligoric@utexas.edu

ABSTRACT

We present JOG, a framework for developing peephole optimiza-
tions and accompanying tests for Java compilers. JOG allows devel-
opers to write a peephole optimization as a pattern in Java itself.
Such a pattern contains code before and after the desired transfor-
mation defined by the peephole optimization, with any necessary
preconditions, and the pattern can be written in the same way that
tests for the optimization are already written in OpenJDK. JOG
automatically translates each pattern into C/C++ code as a JIT
optimization pass, and generates tests for the optimization. Also,
JOG automatically analyzes the shadow relation between a pair of
optimizations where the effect of the shadowed optimization is over-
ridden by the other. We used JOG to write 162 patterns, including
many patterns found in OpenJDK and LLVM, as well as some that
we proposed. We opened ten pull requests (PRs) for OpenJDK, on
introducing new optimizations, removing shadowed optimizations,
and adding generated tests for optimizations; nine of PRs have
already been integrated into the master branch of OpenJDK. The
demo video for JOG can be found at https://youtu.be/z2q6dhOiqgw.

KEYWORDS

Just-in-time compilers, code generation, peephole optimizations
ACM Reference Format:

Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. 2024. JOG: Java JIT
Peephole Optimizations and Tests from Patterns. In 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3639478.3640040

1 INTRODUCTION

Peephole optimizations [11, 13] belong to an essential class of com-
piler optimizations that examine a few adjacent code instructions
or a basic block, known as a window, and make targeted changes
to improve performance or reduce the code’s size, e.g., A + A is
transformed into A << 1. Peephole optimizations are widely used
in popular compilers such as GCC, LLVM, and Java Just-in-Time
compilers (Java JIT for short) [2, 9, 16].

Peephole optimizations are typically implemented as compiler
passes, such that each detects a window and replaces it with an
optimized form. Implementation of an optimization is commonly
done in the language in which the compiler itself is implemented

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04
https://doi.org/10.1145/3639478.3640040

(e.g., C/C++ for Java JIT), using the compiler infrastructure, e.g.,
internal data structure representation, to manipulate windows. This
low-level internal representation is quite different from the actual
code (written in Java) being optimized. The mismatch hinders devel-
opers from effectively reasoning about windows of interest, because
they have to repeatedly map instructions from high-level code (e.g.,
Java) to low-level code (e.g., C/C++) and data. The mismatch also
makes implementation error-prone [7, 8, 19, 24, 26–28].

Alive [10] improves the traditional approach by introducing
patterns, which are written in a domain specific language (DSL)
and manipulate LLVM bitcode. Developers can write patterns in
the DSL which are then translated into compiler passes. However,
Alive still remains significantly detached from the programming
language it optimizes (C++), leading to a steep learning curve and
it lacks support for software tools, e.g., syntax highlighting in IDEs.

Our key insight is that many peephole optimizations can be ex-
pressed within the programming language being optimized, thus
avoiding complex patterns that manipulate low-level code repre-
sentations. In OpenJDK, a significant portion of JIT optimization
tests (known as IR tests) are written in Java and incorporate spe-
cific patterns within their code to trigger the optimizations being
evaluated [15]. We propose to extend the concept, not only to use
patterns to write IR tests but to comprehensively describe the en-
tire optimization, encompassing both code before and after the
optimization, which in turn implicitly describe IR tests.

We present JOG [25], which enables developers to write peephole
optimizations for Java JIT as high-level Java statements. These pat-
terns undergo Java compiler type-checking and are automatically
translated into compiler passes (in C/C++) by JOG. Furthermore,
JOG can automatically generate IR tests (in Java) from these pat-
terns. By writing patterns in Java for Java JIT, we ensure the mean-
ingfulness of statement sequences within programs, i.e., windows
can indeed appear in programs (a guarantee not always achieved
when working with IRs or compiler abstractions). Our approach
also simplifies the rationale behind each peephole optimization,
transforming what was once extensive comments or test cases into
self-explanatory patterns. Moreover, developers can leverage soft-
ware engineering tools like IDEs and linters while creating patterns
in JOG. Having patterns written in Java also opens the door for
future program equivalence checkers[1] compatible with both Java
code and bytecode, readily obtained by compiling JOG patterns.

The brevity of patterns eases the analysis of relations between op-
timizations. Java JIT compilers contain a large number of peephole
optimizations. The maintenance becomes difficult as new optimiza-
tions are included. When developers want to add a new optimiza-
tion, they have to be careful that this optimization’s effect is not
overridden by some existing optimization. For instance, consider
two optimizations,𝑋 and 𝑌 :𝑋 transforms (a - b) + (c - d) into
(a + c) - (b + d), and 𝑌 transforms (a - b) + (b - c) into a

https://youtu.be/z2q6dhOiqgw
https://doi.org/10.1145/3639478.3640040
https://doi.org/10.1145/3639478.3640040


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

1 @Test

2 @IR(failOn = {IRNode.ADD})

3 @IR(counts = {IRNode.SUB, "1"})

4 // Checks (a - b) + (c - a) => (c - b)

5 public long test8(long a, long b, long c) {

6 return (a - b) + (c - a);

7 }

Figure 1: An example IR test available in OpenJDK (SHA

fd910f7) [18].

- c, with variables a, b, c, and d. Notably, any expression matching
(a - b) + (b - c) (𝑌 ) also matches (a - b) + (c - d) (𝑋 ). If
𝑋 is always applied before 𝑌 in a compiler pass, the effect of 𝑋 will
shadow 𝑌 . JOG can automatically report this shadow relation.

Using JOG, we wrote 162 optimization patterns: 68 from Open-
JDK, 92 adapted from LLVM, and two entirely new. Most OpenJDK
patterns were taken from existing tests or hand-written examples in
C/C++ comments. Our most complex pattern is just 115 characters,
compared to the 462-character C/C++ counterpart that manipulates
the IR. Our evaluation confirms that JOG-generated code maintains
JIT optimization effectiveness. Using JOG, we identified a bug in the
Java JIT where one optimization was unreachable due to shadowing
by another. Using these patterns, we submitted ten pull requests
(PRs) to OpenJDK: eight for new optimizations, one to fix shadowed
optimizations, and one for new JOG-generated IR tests. Nine PRs
have been accepted and merged.

JOG is open source and publicly available at https://github.com/
EngineeringSoftware/jog.

2 EXAMPLE

Figure 1 shows a test written using the IR test framework [17] which
is a recommended approach to testing JIT peephole optimizations
in OpenJDK. The test is expected to compile the annotated (@Test)
method test8 and optimize (a - b) + (c - a) to c - b; the
expected transformation is written as a comment. The IR shape
of the compiled method is checked against certain rules specified
using the @IR annotation (lines 2–3). The rules validate that the
compiled method does not contain ADD node (line 2) and contains
exactly one SUB node (line 3).

Using JOG, developers can write an optimization, i.e., (a - b)
+ (c - a) to c - b, in a way that mirrors the existing IR test. In
Figure 2a, a pattern written in JOG is a Java method annotated with
@Pattern. The method’s parameters (line 2 in Figure 2a) declare
variables (a, b, and c), specifying the data type of each as long.
Inside the method, two API calls, before((a - b) + (c - a))
(line 3 in Figure 2a) and after(c - b) (line 4 in Figure 2a), define
the expressions before and after the optimization. Both calls follow
the format of existing IR tests. before((a - b) + (c - a))
directly reuses code from the existing test return (a - b) + (c
- a); (line 6 in Figure 1), and after(c - b) is taken from the
comment // Check (a - b) + (c - a) => (c - b) (line 4 in
Figure 1). Moreover, since the pattern and the test follow the same
structure, not only does JOG enable developers to write patterns,
but it can also automatically generate IR tests from patterns.

JOG automatically translates a pattern into C/C++ code for direct
inclusion in a JIT optimization pass (Figure 2b). Figure 2c displays
hand-written code extracted from OpenJDK, achieving the same
JIT peephole optimization to transform (a - b) + (c - a)

1 @Pattern

2 public void ADD8(long a, long b, long c) {

3 before((a - b) + (c - a));

4 after(c - b);

5 }
(a) Pattern written using JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* _JOG_in1 = in(1);

3 Node* _JOG_in11 = _JOG_in1 != NULL && 1 < _JOG_in1->req() ?

4 _JOG_in1->in(1) : NULL;

5 Node* _JOG_in12 = _JOG_in1 != NULL && 2 < _JOG_in1->req() ?

6 _JOG_in1->in(2) : NULL;

7 Node* _JOG_in2 = in(2);

8 Node* _JOG_in21 = _JOG_in2 != NULL && 1 < _JOG_in2->req() ?

9 _JOG_in2->in(1) : NULL;

10 Node* _JOG_in22 = _JOG_in2 != NULL && 2 < _JOG_in2->req() ?

11 _JOG_in2->in(2) : NULL;

12 if (_JOG_in1->Opcode() == Op_SubL

13 && _JOG_in2->Opcode() == Op_SubL

14 && _JOG_in11 == _JOG_in22) {

15 return new SubLNode(_JOG_in21, _JOG_in12);

16 }...

17 }
(b) Code generated from JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* in1 = in(1);

3 Node* in2 = in(2);

4 int op1 = in1->Opcode();

5 int op2 = in2->Opcode();

6 if (op1 == Op_SubL) {...

7 // Convert "(a-b)+(c-a)" into "(c-b)"

8 - if (op2 == Op_SubL && in1->in(1) == in1->in(2)) {

9 + if (op2 == Op_SubL && in1->in(1) == in2->in(2)) {

10 return new SubLNode(in2->in(1), in1->in(2));

11 }

12 }...

13 }
(c) Hand-written code (with bug) in OpenJDK.

Figure 2: An example of a peephole optimization as imple-

mented in OpenJDK and JOG, and associated test.

into c - b. The implementation matches expressions of interest
and then returns a new optimized equivalent expression. In this
example, the matched expression must meet four conditions: (1) It
is an addition expression (implicitly line 1 in Figure 2b because the
method belongs to AddLNode); (2) its left operand is a subtraction
expression (a - b) (line 12 in Figure 2b); (3) its right operand is
a subtraction expression (c - a) (line 13 in Figure 2b); and (4)
both subtraction expressions share a same operand (a) (line 14 in
Figure 2b). Once a match is found, the code constructs the new
subtraction expression (c - b) using b and c (line 15 in Figure 2b),
reducing the evaluation cost from two subtractions and one addition
to a single subtraction. Notably, a bug existed in the OpenJDK
code due to incorrect access to the right operand of the right sub-
expression (line 8 in Figure 2c), taking 13 years to discover it [19].
If JOG had been used for implementing the optimization, this bug
could have been avoided.

JOG analyzes the before and after API calls to infer conditions
and construct new expressions, eventually generating C/C++ code
as compiler passes. Figure 2b shows code generated from the pattern
in Figure 2a, preserving functionality and avoiding the bug found
in the hand-written code shown in Figure 2c.

https://github.com/EngineeringSoftware/jog
https://github.com/EngineeringSoftware/jog


JOG: Java JIT Peephole Optimizations and Tests from Patterns ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Input Patterns Translation Output

before((a-b)+(b-c));

eAST

eAST

Pattern ADD7

Pattern ADD2

after(a-c);

before((a-b)+(c-d));

after((a+c)-(b+d));

Compiler pass (C/C++)

IR test (Java)

ADD2 Shadows ADD7

Compiler pass (C/C++)

IR test (Java)

Figure 3: Overview of the JOG framework. In addition to

translation from a pattern to an optimization pass, JOG out-

puts IR tests for each optimization, as well as the list of shad-

owed patterns.

3 TECHNIQUE AND IMPLEMENTATION

Figure 3 shows a high-level overview of the workflow of the JOG
framework. In this section, we briefly describe the design and im-
plementation of patterns, translation details, test generation, and
shadow relation detection [25].
Design and implementation of patterns. As the example in Fig-
ure 2a shows, we define the syntax of patterns using a subset of
the Java programming language, where each optimization is rep-
resented as a Java method annotated with @Pattern. The parame-
ters of these methods declare variables used in patterns, with two
types: constant values (representing literals that are annotated with
@Constant) and free variables (representing any expression). We
also provide two API methods, void before(int expression),
which specifies the expression to match in the pattern, and void
after(int expression), which specifies the optimized expres-
sion (int can also be long). A valid pattern must contain both a
before and aftermethod call in the method body, which may also
feature if statements for preconditions and assignments for local
variable re-assignments.
Translation. JOG translates patterns into C/C++ code that imple-
ments compiler passes for JIT optimizations. JOG starts translation
with parsing the expression provided in the before API and con-
structing an extended abstract syntax tree (eAST) for it. The eAST
represents the structure of IR that matches the expression, which
is essentially a directed acyclic graph (DAG). JOG maps identifiers
in the pattern to eAST nodes. The same identifiers are reused to
construct eAST for the after API. Figure 4 shows the eASTs con-
structed from the pattern ADD8 (Figure 2a). Next, JOG creates an if
statement where the condition represents the necessary conditions
for expression matching. These conditions may check operators,
constants, identical identifiers, etc., and any preconditions specified
in the pattern. The “then” branch of the if statement ends with a
return statement providing the optimized expression. Finally, JOG
prepends the if statement with proper variable declarations, con-
cluding translation of the pattern. When handling multiple patterns,
JOG follows the order specified in the provided file.

+

- -

a b c

(a) eAST of before expression.

-

c b

(b) eAST of after expression.

Figure 4: eASTs for pattern ADD8 in Figure 2a.

Test generation. We use the example in Figure 1 to describe how
JOG generates an IR test from the pattern in Figure 2a. The @Test
method first declares exactly the same free variables as the pattern
(long a, long b, long c), and returns exactly the expression
inside the beforeAPI in the pattern (return (a - b) + (c - a);).
One exception is that when the pattern has a constant variable, JOG
uses a random number to substitute the constant variable. Next,
JOG analyzes before and after in the pattern. JOG searches in
after’s eAST (c - b) to count the number of operators (one SUB),
and compares before’s and after’s eASTs to obtain the operators
that exist in before but not in after (ADD). JOG then maps the
operators to the corresponding IR node types used in IR tests and
creates @IR annotations (@IR(counts = IRNode.SUB, “1”) and
@IR(failOn = IRNode.ADD)).
Shadowing optimizations. Consider two optimizations 𝑋 and
𝑌 in an optimization pass, which are sequentially placed, i.e., 𝑋
followed by 𝑌 . If the set of instructions that 𝑌 matches is a subset of
the set of instructions that 𝑋 matches, then 𝑌 will never be invoked
because 𝑋 is always invoked before 𝑌 for any matched instructions.
In this case, we say 𝑋 shadows 𝑌 or 𝑌 is shadowed by 𝑋 , e.g., 𝑋
transforms (a - b) + (c - d) into (a + c) - (b + d), and 𝑌
transforms (a - b) + (b - c) into a - c, with variables a, b, c,
and d. Given a pair of optimizations expressed in patterns 𝑋 and
𝑌 , JOG rewrites the problem of whether 𝑋 shadows 𝑌 formally as
follows: For every expression 𝐸 matched by 𝑌 , is it also matched by
𝑋? JOG then encodes this problem in an SMT formula and leverages
a constraint solver (Z3 [5]) to obtain a result on the shadow relation
between the given pair of patterns [25].

4 TOOL INSTALLATION AND USAGE

JOG requires JDK 11 or later versions. We describe the installation
steps and usage instructions using a Linux system (Ubuntu 20.04)
with GNU Bash (version 5.0) as an example. We also provide a
docker image that contains a built OpenJDK and the cloned JOG
repository, which can be obtained by docker pull zzqut/jog:latest.

4.1 Installation

The first step is to clone the JOG repository1.

$ git clone https://github.com/EngineeringSoftware/jog

$ cd jog

To install JOG, one can execute the installation script like so:

$ ./tool/install.sh

1We provide the icse24-demo tag for the archive purpose.



ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

Figure 5: Screenshot of using JOG from command-line.

Table 1: Summary of patterns that we wrote in JOG.

#Patterns #OpenJDK #LLVM #Original #PRs

162 68 92 2 10

This command calls a bash script to build the JOG jar. If the com-
mand completes normally, an executable jar jog.jar will appear
in the tool directory, i.e, ./tool/jog.jar.

4.2 Usage

After installation, one can run JOG through the executable jar
./tool/jog.jar. We provide an example file Example.java in
the repository, which contains two patterns. To run JOG:
$ java -jar tool/jog.jar Example.java

This command (a) generates C/C++ code as compiler passes, (b) gen-
erates IR tests for the optimizations, and (c) reports a shadow rela-
tion between the pair of patterns (optimizations) provided. Figure 5
shows a screenshot of running the command. JOG saves the gen-
erated C/C++ code in cpp files with names matching the top level
operator of the before API, e.g., generated code for pattern ADD2
with before((a-b)+(b-c)) is saved into addnode.cpp. To inte-
grate these compiler passes into OpenJDK, one can simply copy
the contents of these cpp files into the corresponding files in Open-
JDK with identical names. JOG also generates IR tests as java files,
which can be directly run with OpenJDK IR testing framework.

5 EVALUATION

We wrote 162 patterns using JOG, as detailed in Table 1, span-
ning three categories. First, we studied the Ideal methods from
OpenJDK, and we identified and rewrote 68 optimizations into
patterns found in addnode.cpp, subnode.cpp and mulnode.cpp
within src/hotspot/share/opto/. Second, we studied LLVM’s
InstCombine pass, inspired by the Alive approach [10], and trans-
lated 92 patterns from InstCombineAddSub.cpp and InstCombine-
AndOrXor.cpp in llvm/lib/Transforms/InstCombine/. Addition-
ally, we proposed two optimizations and wrote them as patterns.

We evaluated the code size and complexity [4] of the 68 patterns
rewritten from OpenJDK using JOG. Compared to hand-written op-
timizations, using JOG to write patterns reduced the total character
count from 11,000 to 3,987 (by 63.75%), and the total identifiers from
1,462 to 692 (by 52.67%). We also evaluated JOG-generated C/C++
code performance in comparison to hand-written code as compiler
passes using the Renaissance benchmark suite [20]. Overall, we
found no significant difference on execution time (which is average
over 5 runs) between hand-written code and JOG-generated code.

Furthermore, we used JOG to generate tests from patterns we
wrote. We discovered that 10 tests were missing in OpenJDK, indi-
cating the corresponding optimizations had not been tested. Thus,
we submitted a pull request to include these 10 tests in OpenJDK’s
existing test suites. This pull request has been integrated into the
master branch of OpenJDK (SHA fd910f7).

Table 2: Pull requests we submitted to OpenJDK.

Type Id Status

New optimizations

6441 Merged
6675 Merged
6858 Merged
7376 Merged
7395 Submitted
7795 Merged
16333 Merged
16334 Merged

Shadowing optimizations 6752 Merged

New tests 11049 Merged

In total, we submitted ten pull requests (PRs) to OpenJDK (see
Table 2). In addition to the aforementioned PR for missing tests,
we identified two shadow relations where one optimization was
found to override the effect of another, and we reported the issue
through a PR, which have been confirmed and resolved. Also, eight
other PRs introduced new JIT optimizations based on patterns we
adapted from LLVM or proposed ourselves. One PR is currently
under review, and the remaining seven PRs have been accepted and
integrated into the master branch of OpenJDK. In the future, we
plan to prepare more PRs for the patterns we already wrote.

6 RELATEDWORK

Notable research explores implementing compiler optimizations us-
ing domain specific languages (DSLs). While prior works [6, 10, 21,
23] have introduced DSLs operating at the intermediate represen-
tation level of GCC or LLVM, JOG takes a different approach: JOG
prioritizes developer productivity, allowing optimizations to bewrit-
ten in a high-level language (Java) using an approach very similar
to the one for writing tests for optimizations. Also, researchers have
explored relations between optimizations, such as detecting non-
termination bugs due to repeated application of peephole optimiza-
tions [12, 14], and automatic discovery of new optimizations [3, 22].

7 CONCLUSION

Writing peephole optimizations is labor-intensive and error-prone.
We introduced JOG, a framework that simplifies development by
allowing patterns to be written in Java and then automatically trans-
lating them into C/C++ that can be integrated as a JIT optimization
pass. JOG can also generate IR optimization tests in Java from the
patterns and uncover shadow relations between optimizations. We
wrote 162 patterns from OpenJDK, LLVM, along with some we
proposed. Our evaluation showed that JOG reduces code size and
complexity while preserving optimization effectiveness. We sub-
mitted ten pull requests to OpenJDK, with nine already integrated,
making JOG a valuable tool for Java JIT compiler development.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Pengyu Nie, August Shi, Fu-Yao
Yu, Jiyang Zhang, and the anonymous reviewers for their comments
and feedback. This work is partially supported by a Google Faculty
Research Award, a grant from the Army Research Office, and the
US National Science Foundation under Grant Nos. CCF-2107291,
CCF-2217696, and CCF-2313027.

https://github.com/openjdk/jdk/pull/6441
https://github.com/openjdk/jdk/pull/6675
https://github.com/openjdk/jdk/pull/6858
https://github.com/openjdk/jdk/pull/7376
https://github.com/openjdk/jdk/pull/7395
https://github.com/openjdk/jdk/pull/7795
https://github.com/openjdk/jdk/pull/16333
https://github.com/openjdk/jdk/pull/16334
https://github.com/openjdk/jdk/pull/6752
https://github.com/openjdk/jdk/pull/11049


JOG: Java JIT Peephole Optimizations and Tests from Patterns ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: Scaling
Program Equivalence Checking via Iterative Abstraction and Refinement of
Common Code. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 13–24. https://doi.org/10.1145/3368089.3409757

[2] Richard Biener and Prathamesh Kulkarni. 2022. gcc/match.pd at master - gcc-
mirror/gcc. https://github.com/gcc-mirror/gcc/blob/dcb4bd0/gcc/match.pd.

[3] Sebastian Buchwald. 2015. Optgen: A Generator for Local Optimizations. In
International Conference on Compiler Construction. Springer, Berlin, Heidelberg,
171–189. https://doi.org/10.1007/978-3-662-46663-6_9

[4] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546–558.
https://doi.org/10.1109/TSE.2009.70

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[6] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. 2018. CAnDL: A
Domain Specific Language for Compiler Analysis. In International Conference on
Compiler Construction. ACM, 151–162. https://doi.org/10.1145/3178372.3179515

[7] Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu, Maolin Sun,
Kang Chen, and Hai Jin. 2023. Detecting JVM JIT Compiler Bugs via Exploring
Two-Dimensional Input Spaces. In International Conference on Software Engineer-
ing. IEEE, 43–55. https://doi.org/10.1109/ICSE48619.2023.00016

[8] Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Com-
pilers via Compilation Space Exploration. In Symposium on Operating Systems
Principles. ACM, 66–79. https://doi.org/10.1145/3600006.3613140

[9] LLVM Project. 2022. llvm-project/llvm/lib/Transforms/InstCombine at main -
llvm/llvm-project. https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/
Transforms/InstCombine/InstCombineAddSub.cpp.

[10] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably Correct Peephole Optimizations with Alive. In Programming Lan-
guage Design and Implementation. ACM, 22–32. https://doi.org/10.1145/2737924.
2737965

[11] W. M. McKeeman. 1965. Peephole Optimization. Commun. ACM 8, 7 (1965),
443–444. https://doi.org/10.1145/364995.365000

[12] David Menendez and Santosh Nagarakatte. 2016. Termination-Checking for
LLVM Peephole Optimizations. In International Conference on Software Engineer-
ing. ACM, 191–202. https://doi.org/10.1145/2884781.2884809

[13] Steven S.Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers.

[14] Naoki Nishida and SarahWinkler. 2018. Loop Detection by Logically Constrained
Term Rewriting. In Verified Software. Theories, Tools, and Experiments. Springer,
309–321. https://doi.org/10.1007/978-3-030-03592-1_18

[15] Oracle and/or its affiliates. 2022. jdk/AddINodeIdealizationTests.java at master -
openjdk/jdk - GitHub. https://github.com/openjdk/jdk/blob/master/test/hotspot/
jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java.

[16] Oracle and/or its affiliates. 2022. jdk/subnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
subnode.cpp#L163.

[17] Oracle and/or its affiliates. 2022. jdk/test/hotspot/jtreg/compiler/lib/ir_framework
at master - openjdk/jdk - GitHub. https://github.com/openjdk/jdk/tree/master/
test/hotspot/jtreg/compiler/lib/ir_framework.

[18] Oracle and/or its affiliates. 2023. jdk/AddLNodeIdealizationTests.java at fd910f7 -
openjdk/jdk - GitHub. https://github.com/openjdk/jdk/blob/fd910f7/test/hotspot/
jtreg/compiler/c2/irTests/AddLNodeIdealizationTests.java.

[19] Oracle Corporation and/or its affiliates. 2023. [JDK-8266601] Fix bugs in Ad-
dLNode::Ideal transformations - Java Bug System. https://bugs.openjdk.java.net/
browse/JDK-8266601.

[20] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Programming Language Design and
Implementation. ACM, 31–47. https://doi.org/10.1145/3314221.3314637

[21] The GCC Developer Community. 2022. Match and Simplify. https://gcc.gnu.org/
onlinedocs/gccint/match-and-simplify.html.

[22] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed
Optimizations through the Lens of Dead Code Elimination. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 697–709. https://doi.org/10.1145/3503222.3507764

[23] Sruthi Venkat and Preet Kanwal. 2018. COpt: A High Level Domain-Specific Lan-
guage to Generate Compiler Optimizers. In International Conference on Advanced
Computation and Telecommunication. IEEE, 1–6. https://doi.org/10.1109/ICACAT.
2018.8933593

[24] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Ling-
ming Zhang. 2023. JITfuzz: Coverage-guided Fuzzing for JVM Just-in-Time
Compilers. In International Conference on Software Engineering. IEEE, 56–68.
https://doi.org/10.1109/ICSE48619.2023.00017

[25] Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. 2023. Pattern-Based Peep-
hole Optimizations with Java JIT Tests. In International Symposium on Software
Testing and Analysis. 64–75. https://doi.org/10.1145/3597926.3598038

[26] Zhiqiang Zang, NathanielWiatrek,Milos Gligoric, andAugust Shi. 2022. Compiler
Testing using Template Java Programs. In International Conference on Automated
Software Engineering. ACM, 23:1–23:13. https://doi.org/10.1145/3551349.3556958

[27] Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric.
2024. Java JIT Testing with Template Extraction. In International Conference on
the Foundations of Software Engineering. ACM, to appear.

[28] Zhiqiang Zang, Fu-Yao Yu, Nathaniel Wiatrek, Milos Gligoric, and August Shi.
2023. JAttack: Java JIT Testing using Template Programs. IEEE, 6–10. https:
//doi.org/10.1109/ICSE-Companion58688.2023.00014

https://doi.org/10.1145/3368089.3409757
https://github.com/gcc-mirror/gcc/blob/dcb4bd0/gcc/match.pd
https://doi.org/10.1007/978-3-662-46663-6_9
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3178372.3179515
https://doi.org/10.1109/ICSE48619.2023.00016
https://doi.org/10.1145/3600006.3613140
https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/2884781.2884809
https://doi.org/10.1007/978-3-030-03592-1_18
https://github.com/openjdk/jdk/blob/master/test/hotspot/jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java
https://github.com/openjdk/jdk/blob/master/test/hotspot/jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L163
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L163
https://github.com/openjdk/jdk/tree/master/test/hotspot/jtreg/compiler/lib/ir_framework
https://github.com/openjdk/jdk/tree/master/test/hotspot/jtreg/compiler/lib/ir_framework
https://github.com/openjdk/jdk/blob/fd910f7/test/hotspot/jtreg/compiler/c2/irTests/AddLNodeIdealizationTests.java
https://github.com/openjdk/jdk/blob/fd910f7/test/hotspot/jtreg/compiler/c2/irTests/AddLNodeIdealizationTests.java
https://bugs.openjdk.java.net/browse/JDK-8266601
https://bugs.openjdk.java.net/browse/JDK-8266601
https://doi.org/10.1145/3314221.3314637
https://gcc.gnu.org/onlinedocs/gccint/match-and-simplify.html
https://gcc.gnu.org/onlinedocs/gccint/match-and-simplify.html
https://doi.org/10.1145/3503222.3507764
https://doi.org/10.1109/ICACAT.2018.8933593
https://doi.org/10.1109/ICACAT.2018.8933593
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1145/3597926.3598038
https://doi.org/10.1145/3551349.3556958
https://doi.org/10.1109/ICSE-Companion58688.2023.00014
https://doi.org/10.1109/ICSE-Companion58688.2023.00014

	Abstract
	1 Introduction
	2 Example
	3 Technique and Implementation
	4 Tool Installation and Usage
	4.1 Installation
	4.2 Usage

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

